PROMIS project proposal:

HEMOGLOBIN-BASED SPECTROSCOPY AND NONLINEAR IMAGING OF ERYTHROCYTES AND THEIR MEMBRANES AS EMERGING DIAGNOSTIC TOOL

HEMMAGINERO | Institute of Physics Belgrade and Institute for Medical Research |

Aleksandar Krmpot, Ph.D. (PI)

Research field of the Project: Biophotonics (1st), Biomedicine (2nd)

Keywords: multiphoton microscopy; imaging; non-linear, fluorescence correlation spectroscopy; hemoglobin

STATE OF THE ART & MOTIVATION

Erythrocytes by TPEF microscopy, our study [1] Hemoglobin (Hb) becomes a fluorescent molecular target upon two-photon excitation by ultra-short (femtosecond) laser pulses [2] Two – photon excitation fluorescence (TPEF) microscopy [3,4] enables label- and fixation- free imaging of erythrocytes

- tracking blood vessels within the tissues [5]
- imaging of hemoglobin in mouse retina [6]
- imaging of hemoglobin pathologies (i.e. sickle cell disease) [7]
- mapping of hemoglobin distribution on single cell level (our result [1])

changes in erythrocytes morphology follows hemoglobin spatial distribution by TPEF

erythrocyte morphology is good "biomarker" in progression of modern age disorders [8]

Our studies [1,9]

 1. Bukara et al. (2017) Journal of Biomedical Optics 22 (2), 026003
 2. Zheng et al. (2011) Biomedical optics express 2 (1), 71-79G
 3. Larson (2010) Nature Photonics 5 (1), 1

 4. Denk et al. (1990) Science 248 (4951), 73-76
 5. Garret et al. (2012) Journal of Biophotonics 5 (5-6), 458-468
 6. He et al. (2015) Biomedical optics express 6 (3), 1055-1066

 7.Vigil and Howard (2015) Biomedical optics express 6 (10), 4098-4104
 8. Maulucci et al. (2017) PloS one 12 (9), e0184109
 9. Stanćić et al. (2017) 13th Multinational Congress on Microscopy

HEMMAGINERO

Science Fund of the Republic of Serbia

STATE OF THE ART & MOTIVATION

HEMMAGINERO

For the first time, we employed an advanced imaging technique, TPEF microscopy, for visualization of residual hemoglobin in erythrocyte membranes (ghosts) [1], which is predictive parameter of oxidative stress [2,3] Label-free modality of nonlinear microscopy **third- (THG) harmonic generation microscopy** allows examination of morphology of stored erythrocyte *in situ* [6]

Bukara et al. (2017) Journal of Biomedical Optics 22 (2), 026003
 Welbourn et al. (2018) Free Radical Biology and Medicine 103, 95-106
 Conrard et al. (2018) Cellular Physiology and Biochemistry 51 (4), 1544-1565

2. Kostić et al. (2014) Colloids and Surfaces B: Biointerfaces 122, 250-259

4. Shirshin et al. (2018)Laser Physics Letters 15 (7), 075604

6. Saytashev et al. (2016) Biomedical optics express 7 (9), 3449-3460

OBJECTIVES

GENERAL OBJECTIVE

Utilization of state of the art optical microscopic techniques and expanding their applicability as a tool for erythrocytes/erythrocyte derivatives imaging under various physiological and pathophysiological conditions

- Better understanding of the underlying biological basis of specific disorders
- development of novel methods for diagnosis
- disease risk stratification, using erythrocytes as evolving sensitive markers.

- Particular objective 1 (PO1). Deep insight into photo-physical/chemical processes in the interaction of the hemoglobin with ultra-short laser pulses in vitro and ex vivo.
- Particular objective 2 (PO2). Hemoglobin-based label- and fixation- free TPEF imaging of erythrocytes/erythrocyte membranes under physiological/pathophysiological conditions (diabetes mellitus type 1 and inflammatory bowel disease)
- Particular objective 3 (PO3). Upgrading of the existing hemoglobin-based nonlinear imaging of erythrocytes/erythrocyte membranes by additional modality (THG) and combination with complementary quantitative microscopic methods (FCS)

THG upgrade (PO3a) and FCS development (PO3b)

OVERVIEW OF THE METHODOLOGY AND OUTCOMES

Our, in-house developed, experimental setup for TPEF/SHG

plus consent for open facilities at Karolinska Institutet, Stockholm (FCS) and and DESY, Hamburg (THz spectroscopy)

HEMMAGINERO

IMPACT

DISSEMINATION

Production of the critical scientific data to understand the nature complex processes, such as erythrocytes change of morphology and hemoglobin spatial distribution

Introduction of cutting-edge microscopic techniques to the essential infrastructure for Serbian scientists

Protocols for erythrocytes bioimaging and outcomes in terms of emerging diagnostics Scientific seminars and workshop organized

Data publication in

the open-access

journals

Brochures Layman's website Social media Newsletters Contribution to the *Open Science* as one of the goal of EU and Republic of Serbia Strategy plan for Research and Innovation 2016-2020

Reaching the level of excellence and innovation/research capacities of leading EU research institutes

Contribution to the *Open Innovation* (EU strategy for 2016-2020) through dialogue with the general public (stakeholders, medical stuff, patients...)

IMPLEMENTATION

Task	Related objectives	
Sample preparation	PO1, PO2, and PO3	
Hemoglobin photoproduct characterization	PO1	
TPEF imaging and erythrocytes morphology studies	PO2	
THG development <	PO3a and PO2	(supported officially from most of the local
FCS development	PO3b and PO2	biomedical institutions)
Dissemination	PO1, PO2 and PO3	
Management	PO1, PO2 and PO3	

The most important deliverables and outcomes:

10 milestones 13 deliverables Hemoglobin to ultrashort laser pulses interaction characterized

Imaging protocols, morphology assessment, potential diagnostic

Developed and operational THG and FCS setups

COMPETENCE & MULTIDISCIPLINARITY

Institute of Physics-Belgrade

Institute of Medical Research

Team members	Competence	
Aleksandar Krmpot (PI),	-Experience in TPEF, SHG and THG imaging; collaboration with most relevant biomedical institutions .	
Ph.D. in Physics (2010)	-Experience in FCS and TPEF microscopy setup development; strong international collaboration and working	
	experience.	
	-Organizational skills (project leading, conference organization)	
Ivana Drvenica (P1),	-Experience in: erythrocytes functional status characterization by testing their mechanical and osmotic fragility;	
Ph.D. in Biochemical Engineering and	development and optimization of process for preserved erythrocyte membranes isolation and their biochemical and	
Biotechnology (2015); M.Sc. in	morphological characterization	
Pharmacy (2009)	-erythrocytes imaging using advanced microscopic techniques	
Stanko Nikolić (P2),	-experience in the field of functional fluorescence microscopy and optical system design.	
Ph.D. in Physics (2015)	- Experience in programing and data acquisition systems	
Milica Matić (P3),	-experience in preparing the erythrocyte and hemoglobin samples. Experience in blood and blood-related diseases.	
Ph.D. student, Biophotonics (since		
2019)		
Danica Pavlović (P4),	-experience in field of morphological and photonic characteristics of biological samples (cuticular structures of	
Ph.D. in Biology (2019)	insects and their possible biomimetic application)	
	-experience in advanced imaging techniques	
Mihajlo Radmilović (P5),	fundamental knowledge of cell cultures, protein extraction and nonlinear optics and light-biological matter	
Ph.D. student, Biophotonics (since	interaction needed for the project implementation.	
2018)		

Already established mutual collaboration (IPB to IMR) through current national projects: -one joint publication (Bukara et al. 2017) -number of abstracts at the conferences (Photonica 2015 and 2017, RBC 2016, Multinational Congress on Microscopy (MCM 2017)) and an invited lecture (RBC 2018).